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Abstract—The second order terms of a multiscale expansion
for dealing with rounded corners in 2D electrostatic problems
are studied. The heuristics and the sequence of problems to be
solved are presented and finite element simulations demonstrate
the accuracy of the method.

I. INTRODUCTION

High-voltage applications require a precise knowledge of
the electric field in the area where the geometry of the
structure is sharp. On a real device, the geometry is not
“exactly sharp” but present rounded edges or corners. The
accurate description of these rounded shapes, especially when
the geometry involves several corners, can be cumbersome in
a numerical model. In addition most of the time only a rough
(statistical) description of the rounded shape is available due
to the manufacturing tolerance. Dauge et al. have proposed
in [1] a theoretical approach to tackle the “rounded shape”
problems by an accurate asymptotic analysis.
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(a) Domain with a
rounded corner Ωε.
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(b) Domain with a
sharp corner Ω.
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(c) Unbounded profile
domain Ω∞.

Fig. 1. Considered domains Ωε, Ω and Ω∞.

Define the potentials vε in Ωε and v0 in Ω (see Fig. 1) by
4vε = 0, on Ωε

vε = 0, on Γ0
ε

vε = 1, on Γ1

∂nvε = 0, on ΓN

,


4v0 = 0, on Ω

v0 = 0, on Γ0

v0 = 1, on Γ1

∂nv0 = 0, on ΓN

, (1)

where ε characterizes the “size” of the rounded corner and
∂n denotes n · ∇, n being the unitary outward normal on the
boundary of the domain. Throughout the paper ω denotes the
angle of the sharp corner and α = π/ω. The main idea of [1]
consists in expanding vε into two sums in power of εα. Using
a smooth radial cut-off function ϕ defined by

ϕ(ρ) =

{
1, if ρ > d1

0, if ρ 6 d0

, with d0 < d1, (2)

d0, d1 being fixed corner distances, the expansion writes for
any integer n > 1 (ϕ(./ε) is the function t 7→ ϕ(t/ε))

vε =ϕ
( .
ε

)
v0 + ϕ

( .
ε

) n∑
p=2

bpε
pαvpα

+ (1− ϕ)

n∑
p=1

Bpε
pαVpα

( .
ε

)
+ rεnα,

(3)

where bp and Bp are real parameters and rεnα is such that

∃ε̃ > 0, ∃Cn > 0, ∀ε < ε̃,

√∫
Ωε

‖∇rεnα‖2dx < Cnε
(n+1)α,

(4)
i.e. the energy norm of the error converges as ε(n+1)α to 0,
which is written rεnα = OH1(ε(n+1)α). The functions vpα
satisfy a boundary value problem in the sharp domain Ω (see
Fig. 1(b)), whereas the functions Vqα are the so-called profile
terms that satisfy Poisson’s equation in the infinite domain
Ω∞ of R2, which is a localization of the rounded corner (see
Fig. 1(c)).

The paper [2] was devoted to provide numerically the first
order terms of the theoretical expansion of [1]. The following
remarks have been observed:

• the exact solutions close to the corner, computed for
several values of the curvature radius ε, are quasi-similar,
up to a “scaling factor” (related to ε). It is also noticed
that the “shape” of the solutions close to the corner (their
“shape” but not their amplitude) weakly depend on other
elements of the studied structure, such as the distance to
the boundaries: if the corner geometry is self-similar1, it
is also said that the dominant term of the solutions close
to the corner is self-similar.

• the exact solutions far from the corner are weakly influ-
enced by the change of the curvature radius ε, and they
converge to the solution on the domain with the sharp
corner when ε goes to zero.

The aim of the present paper is to push forward numerically
the expansion (3) on the numerical model studied in [2],
especially when non-symmetric structures are involved.

1Roughly, it means that a single parameter, here ε, and a basic geometry are
sufficient to describe the corners for any value of ε. For a precise definition,
refer to [1].
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II. SECOND ORDER EXPANSION

The heuristics for the construction of the two first orders are
detailed in [1, subsection 4.1]. The roughest approximation v0

of vε, far from the corner, that is defined in Ω by (1), writes
in the neighborhood of the corner

v0(x) '
ρ→0

∞∑
p=1

apρ
pα sin(pαθ) =

∞∑
p=1

aps
pα(ρ, θ), (5)

where (ρ, θ) are the polar coordinates. As the behaviors of v0

and vε are different in the corner, v0 should be truncated in
the corner. Expansion (5) enforces the coefficient B1 of (3) to
equal the first singular coefficient a1, while the profile term
Vα satisfies, for p = 1,

−4XVpα = [4X ;ϕ]spα, in Ω∞,

Vpα|Γ0
∞

= 0,

lim
R→+∞

Vpα = 0.

(6)

For any couple (ν, u), we remind that [∆; ν]u = ∆(νu)−ν∆u.
In [1], it is especially shown that in the neighborhood of +∞

Vα(X) '
ρ→+∞

+∞∑
p=1

Aps
−pα(X). (7)

Then, necessarily, b2 and B2 respectively equal a1A1 and a2

given by (5) and (7), leading to the second order:

vε = ϕ
( ·
ε

)
v0 + εα(1− ϕ)a1Vα

( ·
ε

)
+ ε2α

[
a1A1v2α + (1− ϕ)a2V2α

( ·
ε

)]
+OH1(ε3α),

(8)

where V2α is the profile term that satisfies (6) for p = 2 and
v2α is the correction far from the corner defined by

−4v2α = [4; (1− ϕ)]s−α, on Ω,

v2α = 0, on Γ0, and v2α = 0, on Γ1,

∂nv2α = 0, on ΓN .

(9)

In [2, page 9], the profile problem (25) satisfied by v∞
did not involve the cut-off function ϕ as in (6). Actually,
the profiles Vα and v∞ can be linked through the equality
Vα = v∞ − ϕsα. However, for profiles of order p > 2,
the relationship is more complex and the use of the cut-off
function seems to be more convenient [1].

III. NUMERICAL RESULTS

Two L-shape geometries with a rounded corner are conside-
red; their dimensions are specified in Fig. 2. For both cases, α
equals 2/3. The finite element method has been implemented
for solving (1), (6), and (9) similarly to [2].

The errors in the energy norm of the first and second order
expansions, plotted in Fig. 3, behave respectively as ε2α and
ε3α, independently of the geometry. This is noteworthy since
a2 = 0 in the symmetric configuration (see Fig. 2(a)) and we
could think that the first order terms would provide a better
approximation than the first order terms in the non-symmetric
configuration (see Fig. 2(b)). Nonetheless, this intuition is
obviously not correct and the correction v2α far from the
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Fig. 2. Two considered problems and their dimensions. ε = 0.4.
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(a) Symmetric geometry.
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(b) Non-symmetric geometry.

Fig. 3. Convergence of the error in the energy norm.

corner plays an equivalent role than the correction close to
the corner regarding the energy norm in the whole domain.

The normal electric field along the electrodes in the non-
symmetric configuration (from the bottom right to the top left
of the electrode, see Fig. 2(b)) for two values of ε are presented
in Fig. 4. This normal field has been computed respectively
from vε, from the first order expansion and from the second
order expansion given by (8). The behavior of the normal
field is “closer” for the order 2, in particular the location of
the maximum is roughly equivalent to the correct solution.
However the maximum electric field is overestimated by both
approximations, requiring to go further in the expansion.
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(a) Rounded corner with ε = 0.4.
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(b) Rounded corner with ε = 0.2.

Fig. 4. Normal electric field along Γ0
ε for the exact solution and the two first

order approximations. Non-symmetric configuration is considered (Fig. 2(b)).
Origin for the curvilinear abscissa is in the middle of the rounded corner.
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